The equation of transverse wave in stretched string is $y = 5\,\sin \,2\pi \left[ {\frac{t}{{0.04}} - \frac{x}{{50}}} \right]$ Where distances are in cm and time in second. The wavelength of wave is .... $cm$
$15$
$10$
$25$
$50$
A stretched string is divided into three segments of lengths $50\,cm,\,\,40\,cm$ and $10\,cm$ with the help of bridges. Their vibrations will have frequencies in the ratio
A cylindrical tube $(L = 120\, cm.)$ is resonant with a tuning fork of frequency $330\, Hz$. If it is filling by water then to get resonance again, minimum length of water column is ...... $cm$ $(v_{air} = 330\, m/s)$
In a standing wave on a string rigidly fixed at both ends
The pattern of standing waves formed on a stretched string at two instants of time (extreme, mean) are shown in figure. The velocity of two waves superimposing to form stationary waves is $360\, ms^{-1}$ and their frequencies are $256\, Hz$. Which is not possible value of $t$ (in $\sec$) :-
Three waves of equal frequency having amplitudes $10\,\mu m$, $4\,\mu m$, $7\,\mu m$ arrive at a given point with successive phase difference of $\pi /2$, the amplitude the resulting wave in $\mu m$ is given by